Skip to main content

Profiles


imagen

Cristian Xavier Rojas Villa

Research Interest: Chemometrics and quantitative structure-activity relationships.

Academic Fields: Food Engineering

0000-0003-3770-4645 0000-0003-3770-4645

crojasvilla@uazuay.edu.ec


  • DIPLOMA SUPERIOR EN ANALISIS DE DATOS DE SISTEMAS COMPLEJOS, UNIVERSIDAD DEL AZUAY, ECUADOR, 2008
  • DOCTOR EN QUÍMICA, UNIVERSIDAD NACIONAL DE LA PLATA, ARGENTINA, 2018
  • INGENIERO EN ALIMENTOS, UNIVERSIDAD DEL AZUAY, ECUADOR, 2004
  • Tesis Doctoral aprobada con mención especial (summa cum laude) (2017)
  • Borsa di Studio per Corso di Perfezionamento Ministero degli Affari Esteri. Governo d’Italia (2015)
  • Beca para Doctorado de Investigación Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT). Gobierno de Ecuador (2013)
  • Borsa di studio per Dottorato di Ricerca (2011)
  • Borsa di studio nel settore agroalimentare e sanitario IILA-DGCD/MAE. Governo d’Italia (2006)
  • ChemTastesDB: A Curated Database of Molecular Tastants: ChemTastesDB: A Curated Database of Molecular Tastants. Food Chemistry: Molecular Science, pág: 100090 (2022)
    Link: https://doi.org/10.1016/j.fochms.2022.100090
  • Quantitative Structure-Property Relationship for the Retention Index of Volatile and Semi-volatile Compounds of Coffee: Quantitative Structure-Property Relationship for the Retention Index of Volatile and Semi-volatile Compounds of Coffee. Chemistry Proceedings, pág: 48 (2022)
    Link: https://doi.org/10.3390/ecsoc-25-11731
  • Foodinformatic prediction of the retention time of pesticide residues detected in fruits and vegetables using UHPLC/ESI Q-Orbitrap: Foodinformatic prediction of the retention time of pesticide residues detected in fruits and vegetables using UHPLC/ESI Q-Orbitrap. Food Chemistry, pág: 128354 (2021)
    Link: https://doi.org/10.1016/j.foodchem.2020.128354
  • Química Computacional de los Alimentos: Relaciones Cuantitativas Estructura-Actividad/Propiedad (QSAR/QSPR): Química Computacional de los Alimentos: Relaciones Cuantitativas Estructura-Actividad/Propiedad (QSAR/QSPR) (2021)
  • Introducción a la Tecnología de Conservas Vegetales: Introducción a la Tecnología de Conservas Vegetales (2019)
  • Foodinformatics: Quantitative structure-property relationship modeling of volatile organic compounds in peppers: Foodinformatics: Quantitative structure-property relationship modeling of volatile organic compounds in peppers. Journal of Food Science and Technology, pág: 1-12 (2019)
    Link: https://doi.org/10.1111/1750-3841.14477
  • Conformation-independent QSPR study on water solubility of pesticides: Conformation-independent QSPR study on water solubility of pesticides. Ecotoxicology and Environmental Safety, pág: 47-53 (2019)
    Link: https://doi.org/10.1016/j.ecoenv.2018.12.056
  • Classification-based QSAR models for the prediction of the bioactivity of ACE-inhibitor peptides: Classification-based QSAR models for the prediction of the bioactivity of ACE-inhibitor peptides. Protein & Peptide Letters, pág: 1-9 (2018)
    Link: 10.2174/0929866525666181114145658
  • A retention index-based QSPR model for the quality control of rice: A retention index-based QSPR model for the quality control of rice. Journal of Cereal Science, pág: 303-310 (2018)
    Link: https://doi.org/10.1016/j.jcs.2017.11.004
  • Quantitative structure–property relationships for predicting the retention indices of fragrances on stationary phases of different polarity: Quantitative structure–property relationships for predicting the retention indices of fragrances on stationary phases of different polarity. Journal of the Argentine Chemical Society, pág: 173-193 (2017)
    Link: 10.1016/j.chroma.2015.10.028
  • A QSTR-based expert system to predict sweetness of molecules: A QSTR-based expert system to predict sweetness of molecules. Frontiers in Chemistry, pág: 1-12 (2017)
    Link: https://doi.org/10.3389/fchem.2017.00053
  • Quantitative structure-activity relationships to predict sweet and non-sweet tastes: Quantitative structure-activity relationships to predict sweet and non-sweet tastes. Theoretical Chemistry Accounts, pág: 1-13 (2016)
    Link: 10.1007/s00214-016-1812-1
  • A new QSPR study on relative sweetness: A new QSPR study on relative sweetness. International Journal of Quantitative Structure-Property Relationships (IJQSPR), pág: 76-90 (2016)
    Link: 10.4018/IJQSPR.2016010104
  • Chemometrics Applications and Research: QSAR in Medicinal Chemistry: Chemometrics Applications and Research: QSAR in Medicinal Chemistry (2016)
  • QSPR analysis for the retention index of flavors and fragrances on a OV-101 column: QSPR analysis for the retention index of flavors and fragrances on a OV-101 column. Chemometrics and Intelligent Laboratory Systems, pág: 126–132 (2015)
    Link: https://doi.org/10.1016/j.chemolab.2014.09.020
  • Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase: Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase. Journal of Chromatography A, pág: 277–288 (2015)
    Link: https://doi.org/10.1016/j.chroma.2015.10.028
  • Análisis de conglomerados del turismo receptivo del Ecuador. Una visión multivariable: Análisis de conglomerados del turismo receptivo del Ecuador. Una visión multivariable (2014)
  • Dairy cream response in instrumental texture evaluation processed by multivariate analysis: Dairy cream response in instrumental texture evaluation processed by multivariate analysis. Chemometrics and Intelligent Laboratory Systems, pág: 258-263 (2009)
    Link: https://doi.org/10.1016/j.chemolab.2009.02.011